Week 7
MATH 34B
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Wednesdays 2-3PM South Hall 6431X
Math Lab hours: Wednesday 3-5PM. South Hall 1607
18.2 Let $y^{\prime}=k y(1-y / 10), y^{\prime}(0)=2$, and $y(0)=5$.
(a) What's k ?
(b) What's $y(4)$?
for A more
at $t=0$, hate

$$
\frac{d y}{d t t}=k y\left(1-\frac{t}{0}\right)
$$

$$
\frac{G e n, \text { solvemon }}{y=\frac{10}{A e^{-k t}+1}}
$$

LAST D.
18.5 A spherical snowball is melting. The radius after t hours is $1-t$ meters.
(a) What fraction of the initial mass of the snowball remains after half an hour?
(b) How quickly is the volume of the snowball changing after half an hour?

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{1}{2}\right)^{3}=\frac{\pi}{6} \\
& V(\operatorname{sigin} \theta
\end{aligned}=\frac{4}{3} \pi 1^{3}=\frac{4}{3} \pi \quad .
$$

$$
\text { b) } V=\frac{\frac{4}{3} \pi(1-t)^{3}}{\frac{4}{3} A}=\frac{1}{8}
$$

$$
\begin{aligned}
& y^{\prime}=2, y=5 \\
& \Rightarrow 2=0\left(k \cdot 5\left(1-\frac{5}{10}\right)\right. \\
& \Rightarrow 2=5 k\left(\frac{1}{2}\right) \\
& \Rightarrow k=\frac{4}{5} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{10}{4 e^{-\frac{5}{5}+1}} \\
& y(0)=5 \\
& \Rightarrow A=1 \\
& \text { sopluyin } 4 .
\end{aligned}
$$

18.6 How quickly a leaf grows is proportional how big [ie the surface area] the leaf is. If the area of the leaf grows from $2 \mathrm{~cm}^{2}$ to $3 \mathrm{~cm}^{2}$ in 8 days, how long will it take for the leaf's area to increase to $5 \mathrm{~cm}^{2}$?

$$
\begin{aligned}
& A^{\prime}=k A \\
& \Rightarrow A=6 e^{k t} \\
& A(0)=2 c n \\
& \Rightarrow c=2 \\
& A=20^{k t} \\
& 3=2 e^{k \cdot 8} \\
& \frac{3}{2}=e^{8 k} \\
& \ln \left(\frac{3}{2}\right)=8 k \\
& k=\ln (3 / 2) / 8
\end{aligned}
$$

18.7 Species A doubles every 3 hours and initially there are 5 grams. Species B doubles every 4 hours and initially there are 14 grams.
How long until the two species have the same mass?

$$
\begin{aligned}
& A=5.2^{t / 3} \\
& B=14 \cdot 2^{t / 4} \\
& \text { Set } A=B \Rightarrow 5 \cdot 2^{0 / 3}=14 \cdot 2^{t / 4} \\
& 2^{t / 3 / 4}=\frac{2^{t / 3}}{2^{t / 4}}=\frac{14}{5}
\end{aligned}
$$

19.7 Assume the amount of pollution entering the world's oceans grows exponentially. At the start of 1900 suppose that the instantaneous rate at which pollution enters the oceans is 10^{3} tons per year, and that the amount doubles every 10 years thereafter. Express the rate that pollution enters, in units of tons per year, at a time t years after 1900.

Set up an integral that expresses the total amount of pollution which entered during the period 1900 to 1980.

$$
\int_{0}^{80} 10^{3} \cdot 2^{4 / 10} d t
$$

19.8 A hot object cools down according to Newton's Law so that ℓ hours after the start, the rate that heat leaves is $76 e^{-t / 3}$ Joules per hour. How much heat leaves the object during the first 7 hours? [All you need to know is that a Joule is a quantity of heat. In fact: 4.2 Joules is the heat required to raise 1 gram of water 1 degree Celcius]

$$
\frac{d H}{d t}=-76 e^{-t / 3}
$$

Problem 2, HW 18
MATH 34B
TA: Jerry Luo
jerryluo8@math.ucsb.edu
Website: math.ucsb.edu/~jerryluo8
Office Hours: Wednesdays 2-3PM South Hall 6431X
Math Lab hours: Wednesday 3-5PM, South Hall 1607
Problem statement: Let $y^{\prime}=k y\left(1-\frac{y}{10}\right), y^{\prime}(0)=2$, and $y(0)=5$.
(a) What's k ?

First, we see note that y and y^{\prime} are both functions in terms of t. In particular, since y satisfies the differential equation listed, we know that for any $y^{\prime}=k y\left(1-\frac{y}{10}\right)$ is true for any t. In particular, this is true for $t=0$. When $t=0$, we have that $y(0)=5$, and $y^{\prime}(0)=2$. So, we can replace y^{\prime} with 2 and y with 5 in $y^{\prime}=k y\left(1-\frac{y}{10}\right)$, in which case, we get $2=k(5)\left(1-\frac{5}{10}\right)$, from which, we can solve for k and get $k=\frac{4}{5}$.
(b) What's $y(4)$?

Given $y^{\prime}=k y\left(1-\frac{y}{M}\right)$, we know the general solution is $y=\frac{M}{A e^{-k t}+1}$ (see slides, and if you're not convinced, the appendix). Here, we have $M=10$. Since we know that $y(0)=5$, we see that $5=\frac{10}{A e^{-k \cdot 0}+1}=\frac{10}{A+1}$, in which case, we see that $A=1$. So, we have $y=\frac{10}{e^{-k t}+1}$, where $k=\frac{4}{5}$, from part (a). So, plugging in $t=4$, we get $y(4)=\frac{10}{e^{-k(4)}+1}$, and substituting $k=4 / 5$, this is simply $y(4)=\frac{10}{e^{-\frac{16}{5}}+1}$ (be careful how you plug this in!).

Given $\frac{d y}{d t}=k y\left(1-\frac{y}{M}\right)$, we see that we can separate this into $\frac{1}{y\left(1-\frac{y}{M}\right)} d y=k d t$. We can then integrate these into $\int \frac{1}{y\left(1-\frac{y}{M}\right)} d y=\int k d t=k t+C$.

So, let us find $\int \frac{1}{y\left(1-\frac{y}{M}\right)} d y$. If only we can decompose $\frac{1}{y\left(1-\frac{y}{M}\right)}$ into $\frac{A}{y}+\frac{B}{1-\frac{y}{M}} \ldots$ Oh but we can! If we let $\frac{1}{y\left(1-\frac{y}{M}\right)}=\frac{A}{y}+\frac{B}{1-\frac{y}{M}}$, we can multiply by $y\left(1-\frac{y}{M}\right)$ on both sides and get $1=A\left(1-\frac{y}{M}\right)+B y=A-\frac{A y}{M}+B y$, Since the constant term on the left hand side is 1 , we see that the constant term on the right hand must be too. The constant term on the right hand side is A (all other terms have y 's attached), in which case, $A=1$. Likewise, since there are no y terms on the right hand side (indeed, it's just 1), we must have that $-\frac{A y}{M}+B y=\left(B-\frac{A}{M}\right) y=0$, so $\left(B-\frac{A}{M}\right)=0$. Since $A=1$, this means $B-\frac{1}{M}=0$, so $B=\frac{1}{M}$.

Now, we have that $\int y\left(1-\frac{y}{M}\right) d y=\int \frac{1}{y}+\frac{1 / M}{1-\frac{y}{M}} d y=\int \frac{1}{y}+\frac{1}{M-y} d y$ (the last inequality comes from multiplying M on top and bottom on the thing on the right hand side). This is simply $\ln (y)-\ln (M-y)$, which by log rules, is $\ln \left(\frac{y}{M-y}\right)$. So, we have that $\ln \left(\frac{y}{M-y}\right)=k t+C$, so taking both sides to e, we have $\frac{y}{M-y}=e^{k t+C}=e^{C} e^{k t}$. Let $A=e^{C}$, so we have $\frac{y}{M-y}=A e^{k t}$. Now, solving for y, we have $y=\frac{M}{1+A e^{-k t}}$, and we are done.

